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The ability to detect and quantify microbiota over time from shotgun 
metagenomic data has a plethora of clinical, basic science and public health 
applications. Given these applications, and the observation that pathogens 
and other taxa of interest can reside at low relative abundance, there is a 
critical need for algorithms that accurately profile low-abundance microbial 
taxa with strain-level resolution. Here we present ChronoStrain: a sequence 
quality- and time-aware Bayesian model for profiling strains in longitudinal 
samples. ChronoStrain explicitly models the presence or absence of each 
strain and produces a probability distribution over abundance trajectories 
for each strain. Using synthetic and semi-synthetic data, we demonstrate 
how ChronoStrain outperforms existing methods in abundance estimation 
and presence/absence prediction. Applying ChronoStrain to two human 
microbiome datasets demonstrated its improved interpretability for 
profiling Escherichia coli strain blooms in longitudinal faecal samples from 
adult women with recurring urinary tract infections, and its improved 
accuracy for detecting Enterococcus faecalis strains in infant faecal samples. 
Compared with state-of-the-art methods, ChronoStrain’s ability to detect 
low-abundance taxa is particularly stark.

The human microbiome is involved in many aspects of human health 
and disease and exhibits a great level of diversity within and across host 
environments1. One of the most basic forms of analysis performed on 
any sample in a microbiome study is determining what bacteria are 
present and at what abundance. Although some applications call for 
coarser-grained taxa identification at the operational taxonomic unit 
(OTU) or species level2,3, newer studies increasingly focus on more 
fine-grained resolution at the strain, or even single nucleotide variant 
(SNV) level4–7. Since these studies try to draw conclusions about strain 
fitness, stability and/or competition, they rely on accurate quantifica-
tions of strains in time series.

The process of converting bulk shotgun sequencing reads to 
taxa abundances (‘metagenomic profiling’) usually involves some 
aspect of mapping or aligning reads to reference sequences8–13. An 
alternative is to perform metagenomic assembly14, although for 
low-abundance taxa including most gastrointestinal pathogens of 
interest, this is unlikely to generate scaffolds of sufficient quality to 
produce reliable strain-level insights. Unfortunately, state-of-the-art 
methods quantifying strain-level abundances have a multitude of 
shortcomings when used to track low-abundance taxa, and these 
shortcomings become more evident when used to study longitudinal  
samples.
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human studies. The first human study is the rUTI microbiome project 
(UMB), a year-long longitudinal study of women with a history of recur-
rent urinary tract infections (rUTI) with a matched healthy cohort7. With 
the UMB study we focus on the increased utility and interpretability one 
has with ChronoStrain compared with other state-of-the-art methods 
when tracking strains over time. The second set of samples we apply 
ChronoStrain to is the Baby Biome Study (BBS)22, which collected 
and sequenced between 1 and 6 faecal samples per subject (mean of 
2.5) over the first few months of a child’s life. With the BBS data, we 
demonstrate an improved lower limit of detection with ChronoStrain 
for E. faecalis strains, using paired sample isolates to aid in validating 
our method.

Results
Overview of ChronoStrain
The ChronoStrain pipeline is outlined in Fig. 1. Three components  
are processed in an initial bioinformatics step (Fig. 1a, blue shaded 
boxes):

 (1) Raw FASTQ files from the experiment
 (2) A database of genome assemblies
 (3) A database of marker sequence ‘seeds’

Several methods report a statistic that can be directly interpreted 
as a strain’s predicted abundance11,15–18. Others report ‘pile-up’ sta-
tistics for SNPs across reference genomes or gene-specific loci12,15, 
which require further algorithms to produce strain abundances9,19. 
However, no existing method simultaneously leverages the temporal 
information in a longitudinal study design while also leveraging the 
per-base uncertainty in the reads while profiling taxa (quality scores 
are often only used for preprocessing low-quality reads20). Utilizing 
base-call uncertainty can help overcome ambiguity when mapping 
or aligning reads.

To address these gaps, we developed ChronoStrain—an uncertainty- 
aware, timeseries strain abundance estimation algorithm. Our Bayes-
ian algorithm fits all the above specifications. Using raw reads with 
associated quality score information, sample metadata (host and 
time of collection) and marker sequence seeds (to construct a strain 
database), ChronoStrain learns a presence/absence probability and a 
probabilistic abundance trajectory estimate for each strain being pro-
filed. In this work, we define a ‘strain’ as a cluster of marker sequences 
(subsequences from reference genomes) where the threshold used to 
define these clusters is an arbitrary user-specified variable.

We demonstrate the superior performance of our algorithm on 
synthetic benchmarking data21, semi-synthetic data and data from two 
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Fig. 1 | Overview of ChronoStrain. a, A high-level schematic of ChronoStrain’s 
analysis pipeline showing the inputs to the bioinformatics preprocessing step 
(blue), the model inputs (green) and the model outputs (pink). b, A graphical 
representation of the probabilistic model (Methods ‘Latent abundance 
model’, ‘Sequencing fragment model’ and ‘Sequencing noise model’) used 
by ChronoStrain. White circles are latent random variables, grey circles are 

observations, squares are hyperparameters (not all model parameters shown).  
c, A detailed schematic of the bioinformatics preprocessing step illustrating how 
the marker sequence seeds and the reference genomes are used to construct the 
strain (cluster) database along with an additional illustration of the initial read 
filtering process.
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During initial bioinformatics processing, two tasks are performed. 
First, components (2) and (3) are used to generate a custom database 
of marker sequences for each strain that will be profiled (Methods—
‘ChronoStrain database’). Then, the raw reads from (1) are filtered 
against this database, resulting in a set of filtered reads (Methods—
‘Read filtering’). The inputs for the ChronoStrain Bayesian model are 
then (Fig. 1a, green shaded boxes):

 (4) Filtered read files with quality scores (FASTQ format)
 (5) A metadata file containing sample timepoint information
 (6) A custom database of marker sequences for each strain  

being profiled

Two of the most useful outputs from the model are a probability for 
the presence/absence of each strain in the samples as well as a (proba-
bilistic) timeseries abundance profile for each strain in the database 
(Fig. 1a, pink shaded boxes). We now discuss core components of the 
pipeline and model in more detail.

Our definition of strains in this work is an operational one:  
a strain is simply a collection of marker sequences. Instead of manu-
ally specifying markers for each genome, the user specifies marker 
sequence ‘seeds’. The seeds need not be genes per se; they can be 
arbitrary nucleotide sequences. Candidate marker seeds found in 
this work include MetaPhlAn core marker genes13, sequence typing 
genes23, fimbrial genes and other known virulence factors. Each seed 
is aligned to the reference database genomes, and each sufficiently 
similar match is identified as a marker sequence for the corresponding 
genome in the database.

As a final step, the user gets to decide whether the reference 
sequences should be clustered and what the threshold for clustering 
should be, thus picking the granularity for distinguishing distinct 
strains24. In this work, we use different thresholds for strain clustering, 
ranging from 99.8% sequence similarity to ~100% (every unique marker 
sequence combination is a different strain). We reiterate that ‘strain 
cluster’ and ‘strain’ are used interchangeably.

Our Bayesian model, for a single time series, is shown in Fig. 1b. 
Strain abundances are modelled using a stochastic process Xtk  (which 
is indexed by each strain s as Xtk ,s) across timepoints 𝑡𝑘 ∈ {𝑡1, ..., 𝑡𝑀}, 
together with model inclusion variables Z (indexed as Zs). Then, at 
each timepoint tk, the ith read is modelled as a nucleotide sequence 
ζζζtk ,i  with its corresponding quality score vector qtk ,i . The sequence  
ζζζtk ,i  is modelled through the variables ftk ,i  (the source nucleotide 
sequence fragment of the read), ℓtk ,i  (the random length for a sliding 
window along the markers that determines which fragment is meas-
ured) and 𝒜𝒜tk ,i (the fragment-to-read substitution/indel error profile). 
The output of our Bayesian inference is not one abundance estimate; 
it is actually a full probability distribution. These distributions in turn 
can then be directly interrogated to assess model uncertainty (Sup-
plementary Text B.5). A complete description of the model can be 
found in Methods—‘Latent abundance model’, ‘Sequencing fragment 
model’ and ‘Sequencing noise model’.

ChronoStrain outperforms other methods in benchmarking
We benchmarked ChronoStrain on both synthetic and semi-synthetic 
data. The synthetic benchmark is based on the CAMI2 ‘strain-madness’ 
challenge21. Our semi-synthetic benchmark combines real reads from 
a participant in the UMB study15 with synthetic in silico reads. We 
first present the semi-synthetic benchmark before closing with the 
CAMI2-based benchmark.

Our semi-synthetic data generation process is outlined in Fig. 2a 
with further details provided in Methods ‘Semi-synthetic data genera-
tion’. Real reads are taken from the first six longitudinal stool samples 
from UMB participant 18 (UMB18) where only phylogroup B2 and D 
Escherichia coli strains had been detected. The synthetic reads are gen-
erated from six phylogroup A strains that are synthetically mutated to 

be distinct from genomes in the reference database. Then, using a pre-
defined temporal (ground truth) abundance profile, synthetic reads 
are generated from the six mutant strains and then combined with 
the real reads. These combined read sets are realistic, while having a 
well-defined notion of ground truth abundance ratios for evaluation.

For comparison, we included StrainGST15, StrainEst25 and 
the mGEMS pipeline16. For a discussion on methods that did not 
make it into the benchmark, refer to Supplementary Text A. For all 
semi-synthetic benchmarking, we ran ChronoStrain in two different 
modes: timeseries-aware and timeseries-agnostic (ChronoStrain−T) 
where the latter refers to running ChronoStrain on each sample 
independently.

ChronoStrain significantly outperforms all other methods for 
all simulated read depths in terms of root mean squared error of 
log-abundances (RMSE-log) and area under receiver-operator curve 
(AUROC), except for one scenario, all while maintaining a comparable 
runtime to the other methods (Fig. 2). As expected, ChronoStrain−T 
performs worse than ChronoStrain, but is still significantly better or 
visually on par with the other comparator methods with respect to 
AUROC (Fig. 2d) and the phylogroup A RMSE-log (Fig. 2c). Even though 
ChronoStrain−T does not encode sample timepoint information, it still 
explicitly models presence/absence for each strain with an indicator 
variable Zs, which can help control for false positives.

When RMSE-log is only computed over the six target strains 
(Fig. 2b), the methods are not penalized for false positives and 
ChronoStrain−T performs significantly worse than mGEMS and 
StrainGST. The increased performance for the full timeseries 
run of ChronoStrain comes from its more accurate estimates for 
low-abundance strains, visible when we bin the RMSE-log contribu-
tions according to the synthetic strain’s sample abundance (Extended 
Data Fig. 1). We also performed a formal sensitivity analysis, varying the 
models’ hyperparameters and the ground-truth genomes’ mutation 
rates which can be found in Supplementary Text C.2.

We based our fully synthetic benchmark on the Critical Assessment 
of Metagenome Interpretation II (CAMI2 (ref. 21)) ‘strain-madness’ 
challenge. The original strain-madness challenge generated reads 
for 100 different abundance profiles from a set of 408 genomes. For 
our analysis, we focused on species with multiple conspecific strains 
that had valid multi-locus sequence typing (MLST) schemes (Methods 
‘CAMI2 strain-madness benchmark’). This inclusion criterion resulted 
in strain-level profiling of five species: S. pneumoniae (174 genomes),  
E. coli (97 genomes), K. pneumoniae (47 genomes), S. aureus  
(21 genomes) and E. faecium (21 genomes).

Under RMSE-log, ChronoStrain−T significantly outperformed 
all other methods across all species (Extended Data Fig. 2). For the 
L1-norm error, which was employed in the original CAMI2 challenge21, 
no method had superior performance simultaneously across all five 
species; a similar pattern for the L1 metric appears in the semisynthetic 
results (Extended Data Fig. 3). The apparent performance discrepancy 
between L1 and RMSE-log arises because L1 largely ignores error con-
tributions from the numerous low-abundance genomes. For those 
genomes, ChronoStrain−T consistently outperformed other methods 
across all profiled species. Given that real microbial communities’ 
constituent abundances span many orders of magnitude, we recom-
mend not solely relying on L1 when evaluating abundance estimation 
on complex microbial communities.

Improved interpretability of UMB longitudinal samples
The UMB project monitored 31 women in two cohorts, ‘rUTI’ (multi-
ple UTIs in past year) and ‘healthy’ (no recent history of UTI), over the 
course of a full year7. Each participant provided a stool sample once a 
month, with outgrowth cultures grown from rectal and urine samples 
taken at the first month for all participants. For those participants 
who were diagnosed with a UTI, additional urine samples and out-
growth cultures were taken on the days of diagnoses when possible.  

http://www.nature.com/naturemicrobiology
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Beyond this, metadata about participants’ self-reported dates of 
last-known antibiotic administration and the dates of infection are 
available. In addition to the original samples, we have added a new data 
modality. For a subset of samples from the rUTI cohort for which blooms 
were identified by the original StrainGST analysis7, cultures from stool 

samples plated on MacConkey agar (favouring Gram-negative bacteria 
including E. coli) were sequenced.

We applied ChronoStrain and StrainGST to all 31 time series in 
the UMB study (Supplementary Figs. G1–G31) with model outputs for 
UMB participant 18 shown in Fig. 3. Note that the ChronoStrain strain 
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clusters have a ‘CS’ prefix, whereas the StrainGST strain clusters have 
an ‘SGE’ prefix. For both methods, we have annotated the clusters with 
their respective MLST labels26,27 using an ‘ST’ prefix as well. See Meth-
ods ‘UMB E. coli analysis’ for full details on the UMB analysis pipeline.

The output of ChronoStrain (Fig. 3b,c) suggests that the initial 
infection most probably came from a Phylogroup D/ST69 strain (the 
filled yellow circle next to CS1831 on day 0). After multiple rounds of 
antibiotics, CS1831 is no longer detectable in the urine but still persists 
in the gastrointestinal tract (GIT). Indeed, in stool, two ST69 clusters 
are called across multiple timepoints (CS1831, solid yellow line; and 
CS1259, dashed yellow line), where the dominant cluster is the same as 
the one called in the urine sample and is also the most abundant strain 
in 13 of 17 timepoints.

Another prominent strain cluster is the phylogroup B2/ST95 
cluster CS286 (dashed red line), which shows differing responses to 
the antibiotics; this cluster is recapitulated in both of the enriched 
MacConkey-culture samples (Xs in Fig. 3b; culture-specific abundance 
estimates in Extended Data Fig. 4). The initial dose of nitrofurantoin 
and the unknown antibiotic reported by the participant before day 55 
fail to clear this strain from the GIT; it is present with an abundance 
above or near 10−5. Around the time of the third and fourth round of 
antibiotics, which were beta-lactam inhibitors, all the phylogroup B2 
strains’ abundances drop well below 10−6. However, the fifth round 
of antibiotics is a redosage of nitrofurantoin near day 300, for which 
ChronoStrain identifies the rapid growth of both the old CS286 but 
also a different phylogroup B2 strain CS198 (solid red line) which is a 
newly dominant strain that was previously undetected. These results 
suggest that beta-lactam more effectively cleared the B2 taxa in the 
GIT than nitrofurantoin. This is consistent with previous literature28,29 
suggesting that nitrofurantoin has higher host bioavailability and thus 
accumulates less in the GIT in comparison to beta-lactam.

Interpreting the output of StrainGST (Fig. 3e,f), one sees that 
adjacent timepoints call two phylogroup D, ST69 clusters in a mutually 
exclusive manner. This time series/temporal inconsistency (alternating 
presence/absence over time) is something that is absent in the joint 

analysis done by ChronoStrain (Supplementary Text F). Furthermore, 
the faecal sample analysis suggests that an ST95 strain is present up to 
but not including day 187, yet the MacConkey-culture sample on that 
same timepoint suggests otherwise. In ChronoStrain’s analysis, the cor-
responding dominant ST95 cluster was still detected on that particular 
date, which suggests that our method’s joint analysis had the correct 
detection call. The lack of a coherent cross-sample consensus makes it 
difficult to evaluate the sensitivity of different strains to antibiotics or 
to determine the presence of new strains from a bloom. Furthermore, 
the lack of a credibility (or confidence) interval hampers the interpret-
ability of StrainGST.

In the analysis of UMB18 just presented, we defined distinct strain 
clusters as those with less than 0.998 nucleotide identity over the data-
base marker sequences. This choice in threshold was so as to coincide 
with StrainGST’s level of nucleotide identity used to define clusters in 
their original work7. To demonstrate the utility and interpretability of 
our method, we performed the same analysis as above but with a much 
more fine-grained clustering (Fig. 4). This was thresholded at 1−10−10 
nucleotide identity, effectively capturing single-nucleotide difference 
over our markers.

The overall story from before is the same: there is a dominant 
Clade D strain, a Clade B1 (or C) strain blooms in the middle of the 
time series, and a previously undetected B2 strain becomes domi-
nant at the end. With this fine-resolution view, however, we do call 
more strain clusters. However, one can directly see that several of the 
strain’s credible intervals are entirely overlapping, for example, dashed 
yellow trajectories for ST69 clusters, or dashed blue trajectories for 
phylogroup B1 clusters. This suggests that the model is having trouble 
differentiating those strains and probably should be clustered together 
as in the coarser threshold.

Limit-of-detection improvement in infant samples
The Baby Biome Study collected and sequenced longitudinal faecal 
samples from 774 full term babies during the neonatal and infancy 
period, with additional paired samples from a subset of mothers22. 
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Fig. 3 | Visualization of ChronoStrain’s and StrainGST’s outputs for UMB18, an 
rUTI-positive participant. a,d, Phylogenetic subtrees of strains computed using 
two different metrics: marker-specific k-mer proportion distance41 (a) and whole-
genome k-mer Mash distance (d). Clusters are labelled with the prefix ‘CS’ or ‘SGE’ 
to denote respective clustering methods. MLST labels (Achtman E. coli scheme27) 
are attached as indicated by ‘ST’ prefix. b,e, Scatterplot of strain detections 
across time series for CS (b) and SGE (e) clustering methods. Different markers 

indicate sample modality (stool, MacConkey culture from stool, urine). Solid 
vertical lines indicate dates of UTI diagnoses. Dashed vertical lines marked at the 
top with a letter (for example, ‘N’ for nitrofurantoin) indicate self-reported last-
known dates of antibiotic administration. c,f, Plots of estimated ‘overall’ relative 
abundances in stool for CS (c) and SGE (f). Shaded regions with ChronoStrain are 
centred 95% credible intervals using n = 5,000 posterior samples; centres (solid 
lines) are medians.
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Each infant in this study had between 1 and 6 faecal samples collected, 
with a majority of the neonatal samples taken on days 4, 7 and 21. 
From the faecal samples of 189 infants, 805 isolates were obtained. Of 
these, 349 isolates were E. faecalis (321 from infants, 28 from mothers).  
We applied the mGEMS pipeline as well as ChronoStrain to the subset 
of 189 infants’ timeseries faecal samples with a database that incorpo-
rated the isolate genomes.

After ensuring that both methods’ databases were on equal foot-
ing (Methods ‘BBS E. faecalis analysis’), we performed inference on the 
infant faecal metagenomic samples. For mGEMS, we used the same 
hyperparameters as described in ref. 30. To compare the methods at 
roughly equal sensitivities, we tuned ChronoStrain’s post-inference 
threshold so that the two methods reported the same number of infant 
E. faecalis isolates (Fig. 5).

As intended, the number of strain calls per sample (Fig. 5c) as 
well as the number of strain clusters corresponding to a cultured iso-
late from the same timepoint (Fig. 5e) were similar for both methods. 
However, we did notice a stark difference in the abundance estimates. 
We illustrate this with example trajectories from three infants A01077, 
B00053 and B02273 in Fig. 5a,b (complete set in Supplementary 

Figs. H1–H21). To provide an independent comparison, we used 
Kraken2+Bracken31,32 and MetaPhlAn4 (ref. 33) to estimate E. faecalis 
species abundances (triangles in Fig. 5a,b). mGEMS often produces 
underestimates relative to Bracken across the BBS infant dataset 
(Fig. 5g, ‘All samples’), with the largest discrepancy between Bracken 
and mGEMS occurring for those samples where ChronoStrain makes 
a strain call to a paired sample isolate but mGEMS does not (‘CS-only’).  
To better understand this discrepancy, we plotted E. faecalis abundance 
fold-changes relative to Bracken (and MetaPhlAn) for each sample 
(Extended Data Fig. 5). At ~0.01 relative abundance and below, mGEMS 
outputs zero (or near-zero) E. faecalis abundances, unlike Bracken, 
MetaPhlAn and ChronoStrain.

Finally, we tested the robustness of the methods when the refer-
ence database no longer contains genomes identical to the strains 
we are trying to track. For this experiment, we mutated 117 of the 
BBS isolate genomes, chosen from those already called by mGEMS 
(Supplemental Text E.1), and then performed inference with both 
methods using the same hyperparameters and thresholds as before. 
Overall, mGEMS calls decreased from 117/117 to only 45/117 strains, but 
ChronoStrain’s results were largely unchanged from 108/117 to 109/117  
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Fig. 4 | ChronoStrain’s credibility intervals are a direct visualization of 
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indicated with the prefix ‘CS*’. a, A phylogenetic tree showing the clusters called 
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(Fig. 6 and Extended Data Figs. 6 and 7). In Supplementary Text E.2 we 
discuss these results in more detail.

We emphasize that we intentionally chose isolates with a paired 
sample that already had an mGEMS call, regardless of what Chron-
oStrain had identified using the unmutated database, which is why we 
reported 108/117 calls for the original ChronoStrain run instead of the 
full 117. The drop in the number of strain calls by mGEMS is by design 
of the method’s demix_check diagnostic (which tries to measure the 
novelty of genomes within the sample as compared with those in the 
database): the scores became worse (increased) with mutated isolates 
in the database (Fig. 6b). One can increase the number of correct strain 
calls by allowing larger demix_check scores, but this comes at the cost 
of specificity. With the demix_check score threshold increased from 2 to 
4, mGEMS correctly calls 93/117 of the strains, but the median number 
of calls per sample becomes six times larger than that of ChronoStrain 
(Extended Data Fig. 6c).

These experiments demonstrate that ChronoStrain has more 
accurate abundance estimates for lower-abundance strains and that 
it is more robust to database discrepancies when making strain calls, 
without losing specificity. mGEMS is sensitive to having the strain of 
interest being isolated and sequenced for database inclusion, and the 
pipeline does not reliably estimate abundances below 10−2. These differ-
ences can affect how the strain dynamics are interpreted in statistically 
significant ways. For instance, when looking at strain turnover within 
E. faecalis (pair of adjacent timepoints where the most abundant strain 
is different), ChronoStrain estimates that twice as many infants had at 
least one turnover occurrence in the first month compared with mGEMS 
(40/189 versus 19/189, χ2 test P = 0.0046, Supplementary Table 5).

Discussion
There are three major differences between ChronoStrain and  
the other strain profiling methods we have highlighted in this work. 

4 7 21
Days after birth

Re
la

tiv
e 

ab
un

da
nc

e
Re

la
tiv

e 
ab

un
da

nc
e

Re
la

tiv
e 

ab
un

da
nc

e
Re

la
tiv

e 
ab

un
da

nc
e

Re
la

tiv
e 

ab
un

da
nc

e
Re

la
tiv

e 
ab

un
da

nc
e

Days after birth Days after birth

Days after birth Days after birth Days after birth

10−11

10−8

10−5

10−2

10−11

10−8

10−5

10−2

a (i) (ii) (iii)

(i) (ii) (iii)

CS282:ST269

4 7 21

b

MG245:ST269

4 7 21

10−9

10−6

10−3

100

CS286:ST30 CS480:ST30

4 7 21

10−9

10−6

10−3

100

MG12:ST30
MG362:ST30

MG226:ST30

4 7 21

10−3

10−2

10−1

CS216:ST209 CS489:ST517

4 7 21

10−3

10−2

10−1

MG29:ST209 MG215:ST517

0

5

10

15

20

25

30

N
o.

 o
f c

lu
st

er
s 

ca
lle

d

c

0

50

100

150

200

250

300

350

N
o.

 o
f g

en
om

es
 in

si
de

 c
lu

st
er

s

d

N
o.

 o
f i

so
la

te
s 

ca
lle

d
(w

ith
in

-t
im

ep
oi

nt
)

e
214

27

60

20

N
o.

 o
f s

am
pl

es
 w

/ c
al

le
d 

is
ol

at
es

(a
cr

os
s-

tim
ep

oi
nt

)

f
158

63

11

All samples Both CS-only mGEMS-only

−4

−3

−2

−1

0

1

10
-fo

ld
 c

ha
ng

e 
vs

 B
ra

ck
en

 e
st

im
at

e
(s

pe
ci

es
-le

ve
l)

g
P = 6.0 × 10–18 P = 0.39 P = 2.8 × 10–18 P = 0.39

[Isolates across timepoint]
(a,b): Strain calls

Timepoint-specific isolate
No isolate

(c,d): Methods
CS
mGEMS

mGEMS (no QC)
(e,f): Call overlap

Both
Neither

CS Only
mGEMS Only

ChronoStrain mGEMS
(g): Fold-change comparison

Fig. 5 | ChronoStrain calls isolates from infants across time with more accurate 
abundance estimation than mGEMS. a, Example ChronoStrain E. faecalis strain 
relative abundance estimates for infants A01077 (i), B00053 (ii) and B02273 
(iii). Shaded intervals are the 95% credibility intervals using n = 5,000 posterior 
samples. b(i–iii), mGEMS estimates for the same infants. For each cluster, we 
drew its trajectory only if it passed the method’s respective filter in at least one 
sample. Each sample-specific strain call is marked, depending on whether the 
cluster contains an isolate culture from that donor sample (filled circle/cross). 
Blue triangles + horizontal lines are Bracken E. faecalis species abundance 
estimates; red triangles + lines are MetaPhlAn4 species estimates. c,d, Number 

of clusters passing the filter (c) and total genomes within those clusters (d) on 
n = 486 samples. e, Number of strain calls with an isolate from that same sample 
(321 total). f, Number of samples with a called isolate by either method or both, 
where the isolate was sourced from a ‘different’ sample from the same infant, 
labelled as ‘across-timepoint’ predictions. g, For each sample categorized in f (for 
example, n = 158 for ‘Both’; n = 486 under ‘All’), we checked how far the species 
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correction are displayed. In c, d and g, medians are coloured yellow, boxes are 
25% and 75% quantiles, and whiskers are 2.5% and 97.5% quantiles.
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First, ChronoStrain explicitly models strain presence/absence 
through a dedicated parameter, enabling a direct interpretation of 
the model’s confidence in strain detection. Second, ChronoStrain 
generates probability distributions for strain profiles over time. 
ChronoStrain’s timeseries credible intervals not only aid in tem-
poral interpretation but also help evaluate the appropriateness of 
the strain cluster resolution. Third, our method is marker based 
and thus we use a much smaller portion of the reference genomes 
as part of our pipeline. This approach allows for more intensive 
computational analysis of marker-aligned reads while maintaining 
comparable overall processing times to whole-genome k-mer-based 
methods. Ultimately, ChronoStrain was more interpretable than 
other methods and had superior performance particularly when 
profiling lower-abundance strains.

ChronoStrain has two primary limitations. The first is our require-
ment of providing marker seeds, which, in turn, determine the marker 
sequences. Users should carefully select markers on the basis of their 
specific applications. However, MetaPhlAn33 core genes and MLST27 
genes provide a strong starting point, as demonstrated in the syn-
thetic CAMI2 ‘strain-madness’ benchmark, and our semi-synthetic 
results show viability of non-core genes (for example, variants output 
by PanPhlAn34). The second limitation is ChronoStrain’s reliance on 
reference genomes.

In the future, we plan to address some of these limitations by 
incorporating de novo gene assembly directly into the model. We also 
plan to address the use of long reads (for example, Oxford Nanopore, 
PacBio Hifi) as these technologies become more commonplace in 
metagenomic studies. Even with state-of-the-art accuracy (for exam-
ple, 60% of reads being Q30 or better, as recently attained by ref. 35), 
this still leaves 40% of reads with 20 errors or more (assuming a 20 kb 
read length). In this work, we annotated E. coli using phylogroup and 
ST numbers. Other types of annotations, such as ST131 sublineages36, 
would require inclusion of extra marker genes; we leave the study of 
these other potential strain groupings as future work.

We have introduced a reference-based strain profiling tool 
called ChronoStrain. It performs joint Bayesian inference across 
longitudinal samples and exhibits statistically significant perfor-
mance improvements over current state of the art. The model out-
puts can be directly interrogated to assess the model’s confidence in 
strain calls or if the model is having trouble discriminating between 

different strains in the database. We believe these results will have 
direct impacts on biological insights particularly when profiling lower- 
abundance taxa.

Methods
Human participants
The UTI Microbiome Project7 was conducted with the approval and 
under the supervision of the Institutional Review Board of Washing-
ton University School of Medicine in St Louis, MO. The rUTI study arm 
consisted of women from the St Louis area with at least three UTIs in the 
past 12 months. Women with no history of UTI, or at most one UTI ever, 
were recruited into the control arm via the Department of Urological 
Surgery at Barnes-Jewish Hospital in St Louis. A total of 16 control and 
15 rUTI women aged between 18 and 45 were recruited to the study.  
All participants provided informed consent.

None of the authors in this work were involved in the original Baby 
Biome Study22. That study was approved by the NHS London - City and 
East Research Ethics Committee. Participants were recruited through 
the University Hospital system: Barking, Havering and Redbridge Uni-
versity Hospitals NHS Trust (BHR), the University Hospitals Leicester 
NHS Trust (LEI) and the University College London Hospitals NHS 
Foundation Trust (UCLH). All mothers provided informed consent for 
themselves and their children to participate in the study. Enrolment 
consisted of 774 babies total; 178 of these babies were paired with 175 
mothers who provided maternal faecal samples.

Overview of ChronoStrain
To specify our Bayesian model, one provides a database 𝒮𝒮 of strains 
and their marker sequences, a list of timepoints 𝒯𝒯  and each timepoint 
t’s collection of Nt corresponding reads. For each timepoint t ∈ 𝒯𝒯  and 
i ∈ 1, …, Nt, each observed read rt,i = (ζt,i, qt,i) is specified as a (nucleotide 
sequence, phred quality score vector) pair.

The full Bayesian model, outlined below, describes the joint dis-
tribution of (X, Z, R): X = (Xt)t∈𝒯𝒯  is a latent representation of the  
unobserved abundance profile at time t, Z is a vector that decides 
which strains are included in the population, and R = (Rt)t∈𝒯𝒯  each is 
the subcollection of reads (out of Nt original ones) that align to our 
database. We perform variational inference to approximate the pos-
terior distribution p(X, Z ∣ R). We note that parts of the model imple-
mented in this paper are specifically tailored for short Illumina reads; 
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Fig. 6 | ChronoStrain is more robust than mGEMS to mismatches between 
database genomes and sample reads. We performed inference on the BBS data 
where 117 of the BBS isolates were mutated (genome mutation rate 0.002) before 
including them in the database (Supplementary Text E.1). a, The raw number of 
isolate clusters called by each method. Note that mGEMS calls more isolates due 
to the experimental design: the 117 isolates were initially chosen using mGEMS 
predictions, even if ChronoStrain did not call them. b, The demix_check score 

distribution for all 117 isolate clusters; ‘1’ is best, ‘4’ is worst. Each bar is divided 
into two sections: the solid upper region indicates strains with an abundance 
ratio ≥0.01, and the diagonal-lined lower region indicates strains with abundance 
ratio <0.01. The mutated genomes caused a precipitous increase in the demix_
check scores. c, ChronoStrain’s posterior probabilities; solid upper region 
indicates strain calls with an abundance ratio ≥0.065, and diagonal-lined lower 
region indicates strain calls with abundance ratio <0.065.
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the next section points out exactly where this assumption is encoded. 
This leaves room for a model variant that accommodates long reads 
for future work.

Latent abundance model
First, we model the unobserved abundances using latent representa-
tions Xt1 ,… ,Xt|𝒯𝒯| ∈ ℝ𝒮𝒮 and a single vector Z ∈ {0, 1}𝒮𝒮. The Xt’s are discre-
tized observations of a Weiner process:

Xt1 ∼ 𝒩𝒩 (0,σ20I)

Xtk |Xtk−1 ∼ 𝒩𝒩 (Xtk−1 ,σ2(tk − tk−1)I) .
(1)

The scalar variance parameters σ20,σ
2 are each assigned independent 

instances of Jeffrey’s improper prior37 for the variance of a Gaussian 
with known mean:

p(σ0) ∝
1
σ0

and p(σ) ∝ 1
σ (2)

This prior is chosen to fulfil the role of a ‘non-informative’ prior and 
for its transformational invariance property. For users of our method, 
this invariance means that the choice of measurement units of time—
whether it is minutes, hours or days—does not matter. During inference, 
the variables σ, σ0 are integrated out of the posterior.

The elements of vector Z = (Zs)s∈𝒮𝒮 are independent BERNOULLI(π); 
each Zs indicates whether the strain cluster is present (Zs = 1) or absent 
(Zs = 0). To transform the real-valued vectors Xt into relative abun-

dances, we take Yt,s =
ZseXt,s

∑ ̂sZ ̂seXt, ̂s
, so that Yt ∈ Δ𝒮𝒮−1, the S-component prob-

ability simplex. This transformation is often called ‘masked softmax’ 
in machine learning; the softmax transformation has similarly been 
used in continuous-time dynamic topic models38,39.

Sequencing fragment model
Conditioned on Yt, we model the read rt,i (timepoint t, index i) indepen-
dently from all other reads as described below. We model the reads in 
two steps: the random position of the reads’ source fragments and 
then the sequencing noise. In our model, a ‘fragment’ is a substring 
of a marker sequence, representing the nucleotides which later get 
measured into reads. Each read r = (ζ, q) without a mate pair is modelled 
as being a noisy measurement of a single randomly chosen nucleotide 
sequence fragment f; the mate–pair model is discussed in Supple-
mentary Text B.1.3. The primary assumption is that each read’s source 
fragment overlaps with ‘some’ marker in the database, necessitating a 
filtering step as described in ‘Read filtering’.

First, we introduce a few definitions. For a nucleotide sequence x, 
let |x| denote its length. Allowing each marker sequence of strain 
genome s to be padded with β∣ζ∣ of ‘empty’ nucleotides on both ends, 
let 𝒲𝒲(ℓ)

s  be the collection of all length-ℓ sliding windows of markers of 
s. We say that w ∈ 𝒲𝒲(ℓ)

s  ‘induces’ fragment f if f is the string obtained 
from w by removing all padded bases; in particular, f is always at most 
as long as w (∣f∣ < ∣w∣). For instance, β = 0.5 guarantees that we only 
consider fragments f induced by ≥50% of the (short) read. Let Σ(ℓ)s  
denote the set of all f induced by each w ∈ 𝒲𝒲(ℓ)

s . Finally, let 
n(ℓ)f,s = |{w ∈ 𝒲𝒲(ℓ)

s ∶ w induces f}|  be the number of times f is induced,  
and let n(ℓ)s = ∑f∈Σℓs

n(ℓ)f,s  be its sum across all f.
Using the above definitions, we describe the fragment model. 

For each read rt,i, let ℓt,i be NEGATIVE_BINOMIAL(RNB > 0, PNB ∈ [0, 
1])-distributed. We model ft,i as being sampled proportional to the 
frequency at which it is represented in the population at time t. More 
precisely (dropping the subscripts t, i to make it easier to read):

p( f |Yt, ℓ) ∝ ∑
s∈𝒮𝒮

Yt,sn(ℓ)f,s (3)

This proportionality represents a normalization across all fragments 
f, and the normalization denominator ∑f∑ ̂sYt, ̂sn

(ℓ)
f, ̂s = ∑ ̂s∈𝒮𝒮Yt, ̂sn

(ℓ)
̂s  is a 

function of Yt, the quantity we are trying to estimate. Algorithmically, 
a certain approximation of this (Supplementary Text B.1.2) results in 
an efficient correction for strains whose markers are overrepresented 
in the database.

We remark that this is precisely the part of our method specially 
tailored for short reads. When operating on long reads (typically ~10–
25 kb or longer), our approximation fails to hold and thus our algorithm 
must be adapted to a different strategy. Furthermore, long reads can 
span multiple markers, thus requiring an adjustment in the fragment 
count definition.

Sequencing noise model
Conditioned on ft,i, we describe the per-base sequencing error model 
for read rt,i = (ζt,i, qt,i) using the mathematical language of sequence 
alignments. For any alignment 𝒜𝒜t,i, meaning an arbitrary alignment of 
ζt,i to ft,i represented by a 2 × K array (for some K) of three symbols: 
‘Match’, ‘Mismatch’ and ‘Gap’ (representing either an insertion or dele-
tion), we model

𝒜𝒜t,i| ft,i;qt,i ∼ PHRED_WITH_INDELS( ft,i,qt,i). (4)

We drop the subscripts for exposition. The PHRED_WITH_
INDELS(f, q) distribution is supported over feasible alignments in the 
theoretical search space of the Needleman–Wunsch dynamic program-
ming algorithm40. Its likelihood function is given by a formula assuming 
fixed indel error rates ϵins and ϵdel and the standard phred score model:

p(𝒜𝒜|f;q) = (ϵdel)
(#deletions)(ϵins)

(# insertions)

∏
j∈Matches (𝒜𝒜)

(1 − 10−qj/10) ∏
j∈Mismatches (𝒜𝒜)

(10−qj/10) (5)

for any feasible alignment 𝒜𝒜. The parameters ϵins, ϵdel are specific to the 
sequencing machine and may depend on whether the reads are forward 
or reverse in the mate pair.

Finally, conditional on 𝒜𝒜 and treating quality scores q as a fixed 
observation, each mismatched/inserted base of ζ is sampled uniformly 
at random; the likelihood of the read’s nucleotides ζ is the product

p(ζζζt,i|ft,i, 𝒜𝒜t,i) = ( 14 )
# insertions

( 13 )
#mismatches

∏
j∈Matches

�{ζζζ and fmatchat j}.

(6)

In its entirety, this model has hyperparameters π, RNB, PNB, β, ϵins, ϵdel. 
Our choices are explained in Supplementary Text B.2.

ChronoStrain database
In ChronoStrain’s model, a strain s ∈ 𝒮𝒮 is specified by a (multi-)set of 
markers ℳs, where a ‘marker’ m ∈ ℳs  is simply a nucleotide sequence 
specific, but not necessarily unique, to that strain. Such a sequence 
could be, for example, a variant of a known gene encoding a particular 
target function of interest. The fact that we are using sets implies that 
we pay no attention to markers’ ordering on the chromosome, but we 
do care about genes’ copy numbers, potential homologies and their 
exact nucleotide sequence.

To construct our database, we require a FASTA file containing a 
reference sequence (or a multifasta file containing multiple known 
variants) for each gene; these sequences are called ‘seeds’. To allow 
usage of non-core genes as seeds, the pipeline addresses potential 
complications: genes may have homologues within other species, vary 
in copy number, are possibly mis-annotated, or possibly missed by in 
silico PCR primer searches (for example, E. coli O-antigen gene cluster).

The construction pipeline begins by downloading all available 
genome assemblies (excluding metagenome-assembled genomes of 
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potential low quality) from the same family as our target species (for 
example, Enterobacteriaceae when analysing E. coli). For each seed, 
we run a local BLAST query; the hits are thresholded by per cent align-
ment identity (by default, 75%) and minimum length 150 (a typical read 
length), with --max_target_seqs = 10 × # (database genomes) to report 
a generous number of hits per marker seed query.

Next, to address redundancy in the marker seeds, we merge BLAST 
hits that overlap or are contiguous. For instance, if positions (35,000–
42,000) and (41,000–50,000) are BLAST hits for genome g on the same 
contig/chromosome, then we merge them into a single hit spanning 
positions (35,000–50,000) forming a single marker on g.

Lastly, to address redundancy in the collection of strain genomes, 
we clustered them. We used the tool dashing2 (ref. 41) on the multifasta 
file of markers for each genome, which computes approximations of 
multiplicity-aware k-mer (multi)-set distances. Using the pairwise 
distance matrix output by this tool, we run scikit-learn’s implementa-
tion of agglomerative clustering with ‘complete’ linkage; this is para-
metrized by distance threshold. Each cluster 𝒞𝒞’s representative strain 
srep(𝒞𝒞) was chosen as the strain whose distances most closely resemble 
those of the whole cluster:

srep(𝒞𝒞) = argmin
s∈𝒞𝒞

∑
𝒞𝒞′
|d(𝒞𝒞, 𝒞𝒞′) − d({s}, 𝒞𝒞′)| (7)

where d(𝒞𝒞, 𝒞𝒞′) =
1

|𝒞𝒞||𝒞𝒞′|
∑x∈𝒞𝒞,y∈𝒞𝒞′dashing2(x, y)  is the average distance 

between two clusters. The above sum is over all clusters, including 𝒞𝒞 
itself.

Read filtering
We use bwa-mem2 to quickly align reads to the marker database.  
The match/mismatch penalties are assigned the log2-odds ratio of 
errors from the PHREDWITHINDELS model (assuming a pessimistic 
quality score of 20) in relation to a uniformly random sequence of 
nucleotides:

Matchbonus = 2 ≈ log2 (
1−10−2

1/4
)

Mismatchpenalty = −5 ≈ log2 (
(3/4)×10−2

1/4
)

(8)

Assuming that indels are randomly distributed across each read accord-
ing to indel error rates ϵins, ϵdel (Supplementary Text B.2), we set the gap 
open penalty to zero and the extend penalties to −log2(ϵins), −log2(ϵdel). 
On the basis of these alignments, we only keep reads that aligned to 
some marker sequence, where the alignment maps the read with at 
least 97.5% nucleotide identity. The % identity here is computed after 
re-attaching soft-clipped bases as mismatches to the local alignments 
output by bwa-mem2.

Target posterior approximation
On the basis of the Bayesian generative model, we aim to estimate the 
posterior distribution p(X, Z∣R). We employ ADVI42, which uses stochas-
tic optimization on Monte Carlo estimates of the evidence lower bound 
(ELBO) objective. Using standard VI notation q to denote a generic 
approximate distribution: we use the factorized family q(X)q(Z) of 
densities for our variational fit. q(X) is by default given a full covariance 
matrix, but for longer time series (for example, UMB stool samples), 
we apply a further mean-field factorization q(X ) = q(Xt1 )⋯q(Xt|𝒯𝒯| ).

The main difficulty for inference is in making the data likelihood 
function p(R∣X, Z) efficiently computable. We employ a heuristic 
sparsification, mathematically derived in Supplementary Text B.1. 
The objective function is implemented and optimized using the JAX 
library43 and the Adam gradient descent algorithm. The posterior 
approximation of X is initialized to have mean zero (corresponding 
to a uniform abundance profile for all timepoints) and covariance 
equal to the identity matrix. The posterior approximation of Z is a 

Gumbel-Softmax relaxation44, where the temperature τ is initialized to 
10.0 and is annealed by a factor of 0.95 every epoch, down to a minimum 
of 10−4. In this work, we calculated all statistics using n = 5,000 samples 
from this estimated posterior.

Detection classifier
For all real-data analyses, we applied the following method to interpret 
the approximated posterior distribution p(X, Z∣R). First, we computed 
the collection of strain clusters 𝒮𝒮  where each s ∈ 𝒮𝒮  satisfies p(Zs|R) > π. 
We chose π = 0.95, equivalent to a Bayes Factor threshold of 105 when 
the prior is π = 10−3. Then, we sampled from the conditional posterior 
p(X|Z = �𝒮𝒮), meaning that we conditioned on only 𝒮𝒮  appearing in the 
model; the partial mean-field factorization of the variational solution 
makes this sampling trivial. For each timepoint tk in the time series, a 
strain s is marked as ‘detected’ (as in Figs. 3b and 5) if the resulting 
database-normalized relative abundance estimate median(Yt,s) exceeds 
a cut-off ρ = 5%.

Analysis details
Here we describe the methodology used to analyse each dataset (UMB, 
BBS and semi-synthetic), including marker seeds for the two databases 
used in this work and the settings that were used for each method. The 
precise database construction workflow for ChronoStrain is imple-
mented as a Jupyter notebook for each dataset, available to view in our 
codebase. Analysis on real data for all methods (including the back-
ground reads from UMB18 for semi-synthetic) were run on trimmed 
and decontaminated data (see ‘Sequencing and real-data processing’).

UMB E. coli analysis
For E. coli strain abundance estimation found in this work, our database 
seeds were:

(1) Genes from all E. coli MLST schemes on PubMLST26

(2) Genes used by the ClermonTyping tool45 for phylotyping
(3) The O-antigen gene cluster, flanked by the JumpSTART and gnd 

primers46

(4) H-antigen encoding (flagellar) genes annotated with names 
fliC, flk*, fll*, flm*

(5) Annotated fimbrial genes fim*, and
(6) Annotated Shigatoxin genes stx*

E. coli currently has two ST schemes on PubMLST; we simply 
included all of the genes from both. Our catalogue of reference 
genomes consisted of 5,405 whole-chromosome assemblies from 
the Enterobacteriaceae family, of which 2,063 were E. coli. After the 
BLAST and redundancy and overlap correction, our markers made 
up ~1.5% of the genome when averaged across E. coli entries. For both 
UMB and semi-synthetic analyses, we chose a 99.8% weighted marker 
k-mer frequency similarity (dashing2 with ProbMinHash sketching) as 
a cut-off for the agglomerative clustering heuristic. After this process, 
we ended up with a database of 2,325 Enterobacteriaceae strain cluster 
representatives and their marker sequences; 842 are E. coli.

The systematic BLAST search and overlap correction steps were 
critical. For steps 2, 4, 5 and 6, we relied on genbank annotations; we 
found that several genes suffered from mis-annotations and/or uncon-
ventional naming schemes (for example, stx1A versus stxA1), and thus 
the overlap correction helped correct for redundancies. Furthermore, 
the primers for the O-antigen gene cluster are known to have muta-
tions in different subclades of E. coli47, so the systematic BLAST search 
helped identify genes missed by the in silico primer matching step (we 
used EMBOSS primersearch48 which helps, but does not guarantee, 
finding all hits).

We ran ChronoStrain using this database with default inference 
settings, with prior π = 0.001, and interpreted using posterior threshold 
π = 0.95. Per-timepoint calls (Fig. 3b,d) were made using an abundance 
cut-off (‘Detection classifier’). We ran StrainGST with default settings 
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(k-mer length 23, 5 iterations and score threshold of 0.02) and using a 
database of Escherichia and Shigella genomes. We did not run the next 
tool in the StrainGE pipeline (StrainGR) which characterizes novel SNVs 
from the reads, since our goal was only to compare abundances.

BBS E. faecalis analysis
For E. faecalis strain abundance estimation, our database seeds were:

(1) Genes from all E. faecalis MLST schemes on PubMLST26

(2) PCR primer-specified pathogenicity/virulence-marking/poly-
morphic genes from ref. 49

(3) A subset of 39 genes from the infants’ E. faecalis isolates

We first performed database construction and clustering at 1−10−8 
similarity using just database seed sets 1 and 2 listed above (resulting 
in ~450 E. faecalis clusters out of ~660 total). Using these genes, many 
of the BBS isolates across ‘different’ infants were co-clustered even at 
this extreme of a threshold.

To finely separate these isolates, we constructed seed set #3 using 
the following heuristic. We annotated these infant isolate genomes 
using pgap50, and for each gene name g, we used MAFFT51 to perform 
multiple alignment. Let 𝒞𝒞𝒞i] denote the set of isolates from infant i 
contained within 𝒞𝒞 (a cluster produced using just seed sets 1 and 2), 
and for any isolate x, let g[x] denote the aligned sequence of the gene 
g in x (if x has multiple copies of g, we picked the last one in the GFF 
annotation; if x has zero copies of g, we took a sequence of gap charac-
ters). We formed a distance metric d(𝒞𝒞)g (i, j):

d(𝒞𝒞)g (i, j) = min
x∈𝒞𝒞𝒞i],y∈𝒞𝒞𝒞j]

Hamming(g𝒞x], g𝒞 y]) (9)

which quantifies how well g distinguishes the isolates of infants i and j 
in 𝒞𝒞. Finally, we picked the top k = 3 genes g1, …, g3 maximizing the 
number of non-zero entries of the distance matrix d(𝒞𝒞)gi ; repeating this 
for each 𝒞𝒞 gave us 39 genes for marker group 3. We made no attempt 
to ‘optimize’ k in this work; k = 3 gave a reasonable database size that 
fit within the memory constraints of our machines.

Our reference genomes consisted of 1,087 complete chromosomal 
assemblies from the Enterococcaceae family (excluding E. faecalis) to 
account for sequence similarity-induced confounders, plus the 
2,026 + 350 E. faecalis isolates from a separate European study and BBS 
as in the original mGEMS analysis30. Averaged across E. faecalis entries, 
our markers made up ~1.6% of the genome. We used a 99.8% marker 
similarity cut-off, which resulted in 533 Enterococcaceae strain cluster 
representatives, of which 387 are E. faecalis. Of these, 83 contained at 
least one BBS isolate. ChronoStrain was run on this database with prior 
π = 0.001. Results were interpreted using posterior threshold π = 0.95
; per-timepoint calls (Fig. 5a–f) were made using an abundance cut-off 
(‘Detection classifier’).

To compare to the previous study, we reran the mGEMS pipeline 
(Themisto+mSWEEP+mGEMS bin extraction) in a hierarchical style 
as in ref. 30. This means that we first ran the pipeline to bin reads by 
species (using a published index of ~640,000 genomes52 compatible 
with Themisto v.3.2.1), then an analysis on the E. faecalis bin, and finally 
demix_check to check the quality of the strain bins. Finally, we only kept 
strain bins with abundance greater than 0.01 and removed bins with 
poor confidence scores (3 or 4). For mGEMS, we compiled the index 
for E. faecalis quantification using all 2,376 E. faecalis isolates. We ran 
PopPUNK using the threshold method with threshold 0.00036; this 
was tuned manually, so that PopPUNK produced exactly 83 clusters 
containing at least one infant isolate, roughly matching ChronoStrain’s 
granularity (in the original E. faecalis index from ref. 30, clustered using 
PopPUNK’s dbscan implementation, BBS isolates were concentrated 
within only 37 out of 168 clusters, meaning that the original clustering 
was quite coarse). Additional species-level quantification was done 
twice, once using Kraken2+Bracken and once using MetaPhlAn4 v.4.0.6.

Semi-synthetic data generation
Before generating reads, we first created databases for E. coli abun-
dance estimation. To do so, we used the same set of reference genomes 
from the UMB analysis and reused the E. coli marker set from the UMB 
analysis for ChronoStrain. Each method performs clustering. We tuned 
the clustering parameters (Supplementary Text C.1) so that the clus-
tering methods resulted in the same number of clusters ±1 relative 
to the 99.8%-threshold clustering output by ChronoStrain. This was 
done to ensure that all methods were making predictions at the same 
clustering granularity.

The synthetic portion of our dataset was made up of 10 ‘genome’ 
replicates (sampling 6 genomes and random mutations) times 2 
‘sequencing’ replicates (read simulation was rerun with a different 
seed) across 5 possible simulated read depths, totalling 100 distinct 
overall replicates. For each ‘genome’ replicate seed, we selected 6 
random phylogroup A E. coli genomes from the collection of reference 
genomes used to build the UMB analysis database. To ensure that each 
cluster (regardless of clustering method) was fairly represented across 
the replicates, we assigned to each genome a probability weight pro-
portional to the reciprocal of the root mean-square of the respective 
databases’ cluster sizes. Then, we picked 6 random genomes one at a 
time without replacement using these weights. After a genome was 
chosen, we removed all other genomes that shared a cluster with it, 
for all clustering schemes, so that no cluster was represented twice. 
Finally, to each chosen reference genome, we introduced independ-
ent random mutations by flipping a coin of bias p(Heads) = 0.002 for 
each base. If Heads, we chose one of the three remaining nucleotides 
at random to substitute.

For each choice of six mutated phylogroup A genomes, we simu-
lated reads using ART53 and its built-in HiSeq (length 150) error profiles. 
The reads were sampled according to the counts given by a MULTINO-
MIAL(N,yt) distribution, where N is the chosen simulation read count 
(N = 2,500, 5,000, 10,000, 20,000, 40,000) and each yt  is the vector 
of ground-truth abundance ratios summing to 1 for the 6 synthetic 
genomes for timepoint t. The timeseries ratios y = (y1,… ,y6) were hand 
picked beforehand and fixed for all replicates; the choice of the 
genomes above decides which genome gets assigned to which fixed 
trajectory out of the 6. These trajectories were chosen to span a wide 
range from 0.1 to 10−3, where some strains fluctuated between different 
orders of magnitude, so as to provide a challenging dataset where 
strains were hard to detect in some timepoints and easier in others.

The simulated reads spanned six timepoints and were merged 
with the first six timepoints from UMB18’s stool sample sequences. 
This choice was made on the basis of a preliminary analysis using the 
benchmarked methods, which suggested that phylogroup A was either 
absent or undetectable in these samples. Note that the lowest simulated 
read count (N = 2,500) approximately amounted to ~10−7 overall rela-
tive abundance of phylogroup A after accounting for the ~10 million 
real reads.

Semi-synthetic inference and analysis
We ran StrainGST to report up to 20 strains instead of the default of 5, 
so as to infer strains beyond what it would have returned on the back-
ground samples alone. For StrainEst, we raised its sensitivity slightly 
(-p 5 -a 3), incurring some runtime cost but returning non-trivial out-
puts; default settings caused the programme to recall no ground-truth 
clusters. mGEMS was run hierarchically as described in ref. 30: the first 
analysis used the same ~640,000 genome index, and then the E. coli 
bin analysis was run using the database described above. We did not 
factor demix_check scores into the analysis because all scores were 4 
(the worst possible score) for all E. coli bins. ChronoStrain was run using 
default hyperparameters. After inference, ChronoStrain was inter-
preted using π = 0.95.

For measuring the error in abundance estimation, we computed 
the RMSE-log after renormalizing across a subset of clusters (the six 
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source clusters, or all the clusters labelled as phylogroup A). For an 
estimate ŷ, the RMSE-log metric is given by the formula

RMSE-log (y, ŷ) = √
1
NT ∑

N
i=1∑

T
t=1 (log( yt,i + ϵ) − log( ̂yt,i + ϵ))

2
(10)

where ϵ = 10−4, an order of magnitude smaller than the smallest (rela-
tive) simulated ratio in y. To evaluate the classification metric (AUROC), 
we turned each evaluated method into a classifier by applying a thresh-
old on their abundance outputs to determine ‘detection’.

Before evaluating any error for mGEMS, we thresholded the raw 
abundance estimate54 to mitigate the harmful effect of noise on 
RMSE-log. To do this, we first restricted the abundances of the raw 
mSWEEP output to the target subset (either phylogroup A or the six 
ground-truth clusters) and renormalized. Then, we zeroed out all 
entries below a limit-of-detection (LOD) threshold ϵLOD and renormal-
ized once more to produce ŷ; we chose ϵLOD = 0.001 so that the lowest 
ground-truth ratio of ~0.0025 was allowed to appear. We show the 
sensitivity of the errors to the choice of ϵLOD in Supplementary Fig. C1b.

CAMI2 strain-madness benchmark
When evaluating strain-level profiling on the CAMI2 strain-madness 
dataset, we constructed each method’s database (mGEMS, StrainGE 
and ChronoStrain) using only the gold-standard genomes; see Sup-
plementary Text D for a discussion on why this choice was made. We 
did not cluster these genomes for any method, so that each method 
would have to deal with the full extent of genome-level granularity.

We set out to evaluate methods on those taxa that had more than 
one conspecific gold-standard strain. We also wanted to standardize 
ChronoStrain’s database construction across different taxa, and so 
we further narrowed it down to taxa with published MLST schema as 
of June 2024. As mentioned in the main text, these taxa were S. pneu-
moniae, E. coli, K. pneumoniae, S. aureus and E. faecium.

For mGEMS and StrainGE, we constructed a single pan-species 
database using all of the gold-standard genomes. For ChronoStrain, 
we designed five separate databases, one for each species. Per species, 
we constructed a set of marker seeds from two sources: (1) MetaPhlan4 
markers in all species-level genome bins (SGBs) labelled with that spe-
cies name and (2) reference gene sequences for each gene in that spe-
cies’ MLST schema. For instance, to construct a database for K. 
pneumoniae classification, we used K. pneumoniae MLST genes and 
MetaPhlAn4 SGB marker genes as seeds. All gold-standard strains are 
present in every sample, thus: for ChronoStrain we did not apply a π  
threshold, for StrainGST we lowered the score threshold to 0.0, and 
for mGEMS no abundance thresholding was done.

Computational resources
For benchmarking, all four methods were run on stock Alienware 
Aurora R15s (Intel 12900KF with 128 GB of RAM). ChronoStrain’s 
inference step, in particular, was run on a single RTX 3090; other 
benchmarked methods were not designed with GPU hardware in 
mind. GPU memory size is the primary limiting factor that requires 
us to cluster the database. If one includes many more markers, more 
database clusters and/or more samples, a GPU with more memory is 
required. All benchmark analyses were able to fit on the RTX 3090 
(typical CPU memory footprint was less than ~10 GB CPU RAM dur-
ing inference).

Sequencing and real-data processing
MacConkey-cultured samples were sequenced in the same manner as 
outlined for the original UMB dataset7. Starting with the raw reads, we 
used the demultiplexed, whole-genome portion of the UMB dataset 
for all participants. Just before analysis, all reads from UMB were pre-
processed using the KneadData pipeline (v.0.11.0, https://huttenhower.
sph.harvard.edu/kneaddata/), which invokes Trimmomatic v.0.39  

(ref. 20) to trim adapters and low-quality bases at the ends (phred ≤ 10), 
and Bowtie2 (ref. 55) to discard reads that align to the human genome. 
The BBS metagenomic reads available online did not require trimming 
and decontamination. CAMI strain-madness reads were also quality 
trimmed using Trimmomatic, but using a more conservative setting 
(phred ≤ 5) to better retain paired-end information. All processing 
details can be found in our codebase.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All UMB-related sequencing data, including the new MacConkey- 
culture sequencing experiments, are available under BioProject ID 
PRJNA400628. Publicly available BBS sequencing reads were down-
loaded from the European Nucleotide Archive under accession 
PRJEB32631, and isolates under accession PRJEB22252. The ~640k 
genome Themisto index was downloaded from Zenodo (https://
doi.org/10.5281/zenodo.7736981 (ref. 56). Databases and raw out-
puts for all real-data analyses were uploaded in Zenodo (https://doi.
org/10.5281/zenodo.10932689 (ref. 57) and https://doi.org/10.5281/
zenodo.10932761 (ref. 58), along with semi-synthetic benchmark inputs 
(https://doi.org/10.5281/zenodo.14593703 (ref. 59).

Code availability
The latest version of the ChronoStrain software is available on GitHub 
at https://github.com/gibsonlab/chronostrain. This paper used 
ChronoStrain v0.6.0, available on GitHub and archived on Zenodo 
at https://doi.org/10.5281/zenodo.15116549 (ref. 60). This paper’s 
analyses also used Themisto v.3.2.1, mSWEEP v.2.0.0-3-gbd20c93, 
StrainGE v.1.3.8, StrainEst v.1.2.4, Kraken2 v.2.1.3 (database k2_
standard_16gb_20240112), Bracken v.2.9, and MetaPhlAn v.4.0.6 
(database Jun23_CHOCOPhlAnSGB_202307). Biological reads were 
preprocessed via KneadData v.0.11.0; in silico reads were generated 
using ART v.2016-Jun-06.
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Extended Data Fig. 1 | (Semisynthetic benchmark) Abundance-specific 
RMSE-log error performance. To break down the contribution of the estimates 
to the RMSE error by abundances, we evaluated the RMSE-log error after binning 
(timepoint, synthetic strain) pairs by ground-truth abundance ratios. (a-d) Bins 
are ordered from “most abundant” strain in timepoint to “least abundant”, where 
log10(x) indicates the log-ratio. The RMSE-log was evaluated after adding 10−4 to 

predictions to handle zeroes. All comparisons to Chronostrain are statistically 
significant at level 0.05, after two-sided, paired Wilcoxon tests with Benjamini-
Hochberg (BH) correction, unless noted with an n.s. (p-values in Supplemental 
Table 2) Medians are colored yellow, boxes are 25% and 75% quantiles, whiskers 
are 2.5% and 97.5% quantiles.
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Extended Data Fig. 2 | (CAMI2) Evaluation of methods on CAMI2’s strain-
madness dataset. We evaluated both the L1 error (a1-a5) and the RMSE-log error 
(b1-b5) on five taxa. ChronoStrain−T (marker database of MetaPhlAn + MLST 
markers) is typically middle-of-the-pack in L1 but performs the best in RMSE-log. 
The L1 error tends to be dominated by high-abundance predictions, and hides 
each method’s errors for lower abundance ratios. (c-e) are plots of ground-truth 
abundance versus prediction. StrainGSTcontains many spurious zero-abundance 
predictions, and mGEMS predictions have a stark estimation drop-off when 
abundance is around 10−3 ~ 10−2, depending on the taxa. (f) Quantile-binned 

errors show the stratification across different abundance levels. ChronoStrain 
performs consistently the best across the vast majority of bins, excluding the 
lowest abundance bin (where it is difficult for all methods) and the highest (where 
whole-genome methods are expected to perform better than ChronoStrain).  
All comparisons to Chronostrain are statistically significant at level 0.05, after 
two-sided, paired Wilcoxon tests with Benjamini-Hochberg (BH) correction, 
unless noted with an n.s. (p-values in Supplemental Tables 6, 7) In (a, b, f), 
medians are colored yellow, boxes are 25% and 75% quantiles, whiskers are 2.5% 
and 97.5% quantiles.
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Extended Data Fig. 3 | (Semisynthetic benchmark) The L1 errors of the 
methods. In addition to the RMSE-log shown in Fig. 2 of the main text, we 
also evaluated the L1 distance to the ground truth. Note that the L1 metric has 
traditionally been used for benchmarking taxonomic profiling, but the lack of 
log-scaling means that this metric heavily favors getting the largest abundances 
correct while ignoring low-abundance taxa. (a) The L1 error evaluated after 

re-normalizing on the six ground-truth clusters. (b) The L1 error evaluated after 
re-normalizing on all phylogroup A clusters. All comparisons to Chronostrain 
are statistically significant at level 0.05, after two-sided, paired Wilcoxon tests 
with Benjamini-Hochberg (BH) correction, unless noted with an n.s. (p-values 
in Supplemental Table 1) Medians are colored yellow, boxes are 25% and 75% 
quantiles, whiskers are 2.5% and 97.5% quantiles.
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Extended Data Fig. 4 | (UMB) ChronoStrain’s raw estimates for the E. coli 
abundances of MacConkey-cultures grown from UMB18 stool samples. The 
y-axis quantifies the strain clusters marked with X shown on Main Fig. 3b. Colors 

are chosen using the same phylogroup-based color palette. In the boxplots, the 
boxes denote the 25%, 50% and 75% quantiles from the posterior samples and the 
whiskers denote the 2.5% and 97.5% quantiles.
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Extended Data Fig. 5 | (BBS) A comparison of the fold-change versus third-
party methods for ChronoStrain and mGEMS’ E. faecalis species estimates. We 
ran two methods for species-level comparison: (a) Kraken2 + Bracken and (b) 
MetaPhlAn4. Each dot is a single infant sample. In both plots, the fold change is 
computed as the difference between log10 of the predictions plus ϵ = 10−6 to avoid 
NaN’s. The dots forming a straight, diagonal line on the bottom of the 
scatterplots (the line log10(x) + y = −6) are an artifact of this ϵ, where 

ChronoStrain (resp. mGEMS) – but not Bracken (resp. MetaPhlAn4) – estimates 
zero/near-zero abundance for E. faecalis on the same metagenomic sequencing 
input. For mGEMS, a sharp drop-off just above 10−2 is visible in both (a) and (b), 
suggesting that the method has a detection threshold at that location. In 
contrast, ChronoStrain generally agrees with both third-party methods all the 
way down to 10−5, with higher spread as E. faecalis becomes rarer in the sample.
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Extended Data Fig. 6 | (BBS) Inference result comparison using the mutated 
database of 117 infant isolates, in the style of Figure 5. These are the results after 
running the mutated-database experiment on the BabyBiome dataset (n = 486 
samples), as discussed in Supplemental Information, Section E. The first row (a) 
only retains mGEMS predictions with demix_check quality scores 2 or better. 
The second row (b) retains 3 or better, third row (c) is 4 or better. ChronoStrain 

thresholds are held fixed in all three rows (ChronoStrain: π = 0.95, ratio ≥0.065). 
One may loosen the demix_check threshold in order to obtain comparable 
numbers of isolate calls (a3,b3,c3) at the cost of calling more clusters (a1,b1,c1), 
whereas ChronoStrain remained largely the same from the unmodified run from 
Fig. 5 (Fig. 6). In the boxplots, medians are colored yellow, boxes are 25% and 75% 
quantiles, whiskers are 2.5% and 97.5% quantiles.
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Extended Data Fig. 7 | (BBS) Abundance trajectories of clusters using 
mutated databases. Using the mutated analysis results, we plotted the inferred 
trajectories for the same three examples shown in Fig. 5a,b, drawn in the same 
style. Just like before, the trajectory for a cluster is rendered only if it passes the 
filter for the respective method in at least one timepoint. For each trajectory’s 
timepoint, if it passed the filter, we place a marker. It is either an O (has an isolate 
cultured at that timepoint) or X (no isolate for that timepoint). After mutation, 

mGEMS’ filter no longer calls the corresponding isolates in infants A01077, 
B02273 (b1, b3) whereas ChronoStrain remains unchanged from the original 
inference (a1, a3). For B00053 (a2, b2), the isolate is called correctly at the first 
timepoint for both methods but in mGEMS is no longer the dominant strain, 
whereas both methods in the original analysis agreed that it was the dominant 
strain in the sample (Fig. 5, panels a2, b2).
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